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Résumé. L’étude des indicateurs de pauvreté pour les petits domaines est d’intérêt
grandissant ce dernier temps. Ces indicateurs aident les gouvernements et les organisa-
tions internationales à planifier et gérer plus facilement les mesures à l’échelle régionale
en assurant une meilleure réponse vers les populations qui ont vraiment besoin. Plusieurs
méthodes ont été proposées ce dernier temps pour étudier ces indicateurs pour les petits
domaines. Ces méthodes donnent en général des meilleurs résultats que les méthodes
traditionnelles employées par la Banque Mondiale. Dans cette présentation, nous allons
présenter plusieurs méthodes pour l’étude d’indicateurs de pauvreté pour les petits do-
maines, dont celles basées sur les modèles au niveau domaine et utilisées par U.S. Census
Bureau ainsi que les méthodes basées sur les modèles au niveau unité utilisées par la
Banque Mondiale. Nous allons aussi discuter quelques modifications des procédures de
base qui peuvent être utilisées pour traiter le cas d’un sondage non-informatif ou à deux
degrés. Nous allons présenter aussi les avantages et inconvénients de ces méthodes d’un
point de vue pratique et théorique.

Mots-clés. Bayes hiérarchique, indicateur de pauvreté, meilleur estimateur em-
pirique, modèle niveau unité, modèle niveau domaine, paramètres non-linéaires.

Abstract. Poverty mapping in small areas is currently having increasing interest,
because those maps aid governments and international organizations to design, apply
and monitor more effectively regional development policies, directing them to the actual
places or population subgroups where they are more urgently needed. After the tradi-
tional method used by the World Bank, several other procedures have been developed
that proved to have better properties. We will review several methods that are applied
for poverty mapping in small areas, including those based on area level models and used
by the U.S. Census Bureau and methods based on unit level models such as the traditional
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method used by the Word Bank. We will also discuss some variations of the basic pro-
cedures that can be used to deal with certain situations such as informative sampling or
two stage sampling. We will discuss the pros and cons of these methods from a practical
point of view, but based on the theory that is known for them.

Keywords. Area level model; Non-linear parameters; Empirical best estimator; Hi-
erarchical Bayes; Poverty mapping; Unit level models.

1 Introduction

Poverty maps are an important source of information on the regional distribution of
poverty and are currently used to support regional policy making and to allocate funds to
local jurisdictions. Good examples are the poverty and inequality maps produced by the
World Bank for many countries all over the world. In the U.S., the Small Area Income
and Poverty Estimates (SAIPE) program (http://www.census.gov/hhes/www/saipe) of
the Census Bureau provides annual estimates of income and poverty statistics for all school
districts, counties, and states, for the administration of federal, state and local programs
and the allocation of federal funds to local jurisdictions. In Europe, several efforts have
been done to create regional databases and associated maps of poverty and social exclusion
indicators in order to support regional development policies, see e.g. the joint project
èèPoverty Mapping in the New Member States of the European Union” between the World
Bank and the European Commission and the TIPSE project (The Territorial Dimension
of Poverty and Social Exclusion in Europe), commissioned by the European Observation
Network for Territorial Development and Cohesion (ESPON) program. In Mexico, the
National Council for the Assessment of the Social Development Policy (CONEVAL) is
committed by law to produce regular poverty and inequality estimates at the state level
by population subgroups and at municipality level.

Obtaining accurate poverty maps at high levels of disaggregation is not straightforward
because of insufficient sample size of official surveys in some of the target regions. Direct
estimates, obtained with the region-specific sample data, are unstable in the sense of
having very large sampling errors for regions with small sample size. Here we review the
main methods for the estimation of general non-linear small area parameters, focusing for
illustrative purposes on a specific family of poverty indicators. Specifically, we describe
direct estimation, the EBLUP based on the Fay-Herriot area level model (Fay and Herriot,
1979), the method of Elbers, Lanjouw and Lanjouw (2003), the empirical Best/Bayes
(EB) method of Molina and Rao (2010) together with its variation called Census EB, the
hierarchical Bayes (HB) method of Molina, Nandram and Rao (2014), and other variants
of the EB method to deal two-stage sampling or informative sampling. We put ourselves
in the point of view of a practitioner and discuss, as objectively as possible, the benefits
and drawbacks of each method.
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2 Poverty indicators

In this paper, for illustration purposes we will focus on the FGT family of poverty indi-
cators introduced by Foster, Greer and Thorbecke (1984), although most of the methods
that will be presented can be applied to general poverty or inequality indicators.

Consider a population P of size N that is partitioned into D domains or areas
P1, . . . , PD, of sizes N1, . . . , ND. Let Edi be a measure of welfare for individual i (i =
1, . . . , Nd) in area d (d = 1, . . . , D). Let z be the poverty line, that is, the value such that
when Edi < z, individual i from area d is regarded as èèat risk of poverty”. Then, the
FGT family of poverty indicators for area d is given by

Fαd =
1

Nd

Nd∑
i=1

(
z − Edi

z

)α
I(Edi < z), α ≥ 0, d = 1, . . . , D, (1)

where I(Edi < z) = 1 if Edi < z, and I(Edi < z) = 0 otherwise. For α = 0 we obtain the
proportion of individuals èèat risk of poverty”, that is, the poverty incidence or at-risk-
of-poverty rate. For α = 1, we get the average of the relative distances to not being èèat
risk of poverty”, called the poverty gap. The poverty incidence measures the frequency
of poverty, whereas the poverty gap measures the intensity of poverty.

3 Direct estimators

Let s be a sample drawn from the population P . We denote by sd = s∩Pd the subsample
from area d of size nd < Nd and by rd = Pd − sd the complement of sd, of size Nd − nd.
The overall sample size is n = n1 + · · ·+ nD.

If we wish to estimate a given characteristic in a domain or area, a direct estimator
is that estimator obtained using only the observations from that area, provided that this
area has been sampled (i.e., with strictly positive sample size). The FGT poverty indicator
(1) of order α for area d can be expressed as a linear parameter as follows

Fαd = N−1d

Nd∑
i=1

Fαdi, Fαdi =

(
z − Edi

z

)α
I(Edi < z), i = 1, . . . , Nd.

Then, the basic direct estimator of Fαd is simply given by

F̂DIR
αd = N−1d

∑
i∈sd

wd,iFαdi, (2)

where wd,i is the survey weight of unit i from area d.
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4 Fay-Herriot model

The Fay-Herriot (FH) area level model, introduced by Fay and Herriot (1979), links the
parameters of interest for all the areas, Fαd, d = 1, . . . , D, through a linear model as

Fαd = x′dβ + ud, d = 1, . . . , D. (3)

Here, xd is a p-vector of area level covariates, β is the regression parameter common for
all areas, and ud is the area-specific regression error, also called random effect for area
d. We assume that area random effects ud are independent and identically distributed

(iid), with unknown variance σ2
u, that is, ud

iid∼ (0, σ2
u). Note that true values Fαd are not

observable and therefore model (3) cannot be directly fitted. However, we can make use
of a direct estimator F̂DIR

αd of Fαd. FH model assumes that F̂DIR
αd is design-unbiased, with

F̂DIR
αd = Fαd + ed, d = 1, . . . , D, (4)

where ed is the sampling error for domain d. We assume that sampling errors ed are

independent of random effects ud and satisfy ed
ind∼ (0, ψd), where the sampling variances

ψd, d = 1, . . . , D, are assumed to be known. Combining (3) and (4), we obtain a linear
mixed model

F̂DIR
αd = x′dβ + ud + ed, d = 1, . . . , D. (5)

The best linear unbiased predictor (BLUP) of Fαd = x′dβ+ud under model (5) is given
by

F̃FH
αd = x′dβ̃ + ũd, (6)

where ũd = γd(F̂
DIR
αd − x′dβ̃) is the BLUP of ud, with γd = σ2

u/(σ
2
u + ψd) and where β̃ is

the weighted least squares estimator of β, given by

β̃ =

(
D∑
d=1

γdxdx
′
d

)−1 D∑
d=1

γdxdF̂
DIR
αd .

In practice, the variance σ2
u of the area effects ud is unknown and needs to be estimated.

Common estimation methods are maximum likelihood (ML) and restricted maximum
likelihood (REML). REML corrects for the degrees of freedom due to estimating β and
leads to a less biased estimator of σ2

u for finite sample size n. Let σ̂2
u be the resulting

estimator. Replacing σ̂2
u for σ2

u in (6), we obtain the empirical BLUP (EBLUP) of Fαd,
denoted here as F̂FH

αd and called hereafter FH estimator.
A second-order correct estimator of MSE (F̂FH

αd ) is given in Rao (2003, Chapter 7),
assuming normality of ud and ed. Good and bad properties of FH estimator (6) are listed
below, including particular properties for poverty mapping.
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5 ELL method

The method of Elbers, Lanjouw and Lanjouw (2003), called hereafter ELL method, as-
sumes a unit level linear mixed model for a log-transformation of the variable measuring
welfare of individuals, with random effects for the sampling clusters or primary sampling
units. For comparability with the rest of the methods presented here, in the following
we assume that the sampling clusters are the areas. In this case, the model becomes the
nested error model of Battese, Harter and Fuller (1988) for the log-transformation of the
welfare variables, that is, Ydi = log(Edi) is assumed to be linearly related with a p-vector
of auxiliary variables xdi, which may include unit-specific and area-specific covariates, and
includes random area effects ud as follows

Ydi = x′diβ + ud + edi, i = 1, . . . , Nd, d = 1, . . . , D. (7)

Here, β is a p-vector of regression coefficients, ud
iid∼ (0, σ2

u), edi
ind∼ (0, σ2

ek
2
di), where ud

and edi are independent and kdi are known constants.
ELL estimator of Fαd is given by the marginal expectation F̂ELL

αd = E[Fαd] under
model (7). This estimator and its MSE are approximated by a bootstrap method. In this
bootstrap procedure, random effects u∗d and model errors e∗di are generated from residuals
obtained by fitting model (7) to survey data. Then, a bootstrap census of Y -values is
generated as

Y ∗di = x′diβ̂ + u∗d + e∗di, i = 1, . . . , Nd, d = 1, . . . , D,

where β̂ is an estimator of β. The generation is repeated for a = 1, . . . , A, obtaining
A censuses. Then, for each bootstrap census a, the FGT poverty indicator for area d is
calculated as

F
∗(a)
αd =

1

Nd

Nd∑
i=1

(
z − exp(Y

∗(a)
di )

z

)α

I(exp(Y
∗(a)
di ) < z).

The ELL estimator of Fαd is then approximated by averaging over the A generated cen-
suses, that is,

F̂ELL
αd =

1

A

A∑
a=1

F
∗(a)
αd .

The MSE of F̂ELL
αd is then estimated as follows

mse(F̂ELL
αd ) =

1

nd

A∑
a=1

(F
∗(a)
αd − F̂

ELL
αd )2.

6 Empirical Best/Bayes EB method

The empirical Best/Bayes (EB) method of Molina and Rao (2010) assumes that the
population variables Ydi follow the nested error model (7) with normality of random
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effects ud and errors edi. Under that model, the area vectors Yd = (Yd1, . . . , Yd,Nd
)′

are independent for d = 1, . . . , D and satisfy Yd
ind∼ N(µd,Vd), where µd = Xdβ and

Vd = σ2
u1Nd

1′Nd
+ σ2

eAd, for Ad = diag(k2di; i = 1, . . . , Nd). For an area parameter
δd = h(Yd), the estimator that minimizes the MSE, called best estimator, is given by

δ̂Bd = EYdr
[h(Yd)|Yds;θ] =

∫
h(Yd)f(Ydr|Yds;θ)dYdr, (8)

where f(Ydr|Yds;θ) is the conditional distribution of the vector of out-of-sample values
Ydr in domain d given the sampled values Yds in that domain and θ is the vector of
model parameters. Now replacing θ in (8) by an estimator θ̂, we get the empirical best
(EB) estimator, δ̂EBd .

Under the nested error model (7), the distribution of Ydr|Yds is easy to derive. First,
we decompose Xd and Vd into sample and out-of-sample elements similarly as we do with
Yd, that is,

Yd =

(
Yds

Ydr

)
, Xd =

(
Xds

Xdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
.

By the normality assumption, we have that Ydr|Yds
ind∼ N(µdr|s,Vdr|s), where the condi-

tional mean vector and covariance matrix are given by

µdr|s = Xdrβ + γdc(ȳdc − x̄Tdcβ)1Nd−nd
, (9)

Vdr|s = σ2
u(1− γd)1Nd−nd

1TNd−nd
+ σ2

ediagi∈rd(k2di). (10)

Here, γdc = σ2
u(σ

2
u + σ2

e/cd·)
−1, for cd· =

∑
i∈sd cdi with cdi = k−2di , and ȳdc and x̄dc are

weighted sample means obtained as

ȳdc =
1

cd·

∑
i∈sd

cdiYdi, x̄dc =
1

cd·

∑
i∈sd

cdixdi. (11)

For complex non-linear parameters δd = h(Yd), the expectation given in (8) cannot be
calculated analytically. In those cases, the EB estimator δ̂EBd is approximated by Monte

Carlo. This requires to simulate multivariate Normal vectors Y
(a)
dr of sizes Nd − nd, d =

1, . . . , D, from the (estimated) conditional distribution of Ydr|Yds and then to replicate
for a = 1, . . . , A, which may be computationally unfeasible. Simulation of very large
multivariate Normal vectors Y

(a)
dr can be avoided by noting that the conditional covariance

matrix Vdr|s, given by (10), corresponds to the covariance matrix of a random vector Y
(a)
dr

generated from the model

Y
(a)
dr = µdr|s + v

(a)
d 1Nd−nd

+ ε
(a)
dr , (12)
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where v
(a)
d and ε

(a)
dr are independent and satisfy

v
(a)
d ∼ N(0, σ2

u(1− γd)) and ε
(a)
dr ∼ N(0Nd−nd

, σ2
ediagi∈rd(k2di));

see Molina and Rao (2010). Using model (12), instead of generating a multivariate normal

vector Y
(a)
dr of size Nd − nd, we just need to generate 1 +Nd − nd independent univariate

normal variables v
(a)
d

ind∼ N(0, σ2
u(1 − γd)) and ε

(a)
di

ind∼ N(0, σ2
ek

2
di), for i ∈ rd. Then, we

obtain the corresponding out-of-sample values Y
(a)
di , i ∈ rd, from (12) using as means,

the corresponding elements of µdr|s given by (9). Using the vector Y
(a)
dr generated from

(12), we construct the census vector Y
(a)
d = (Y′ds, (Y

(a)
dr )′)′ and calculate the parameter of

interest δ
(a)
d = h(Y

(a)
d ). For a non-sampled area d (i.e., with nd = 0), we generate Y

(a)
dr

from (12) with γdc = 0 and in this case Y
(a)
d = Y

(a)
dr . The Monte Carlo approximation to

the EB estimator (8) of δd = h(Yd) is then given by

δ̂EBd ≈
1

A

A∑
a=1

h(Y
(a)
d ). (13)

In particular, to estimate the FGT poverty indicator given in (1), Molina and Rao
(2010) assumed that the transformed welfare variables Ydi = T (Edi) follow the nested
error model (7), where T (·) is a one-to-one transformation. In terms of the vector of
transformed variables, Yd = (Yd1, . . . , YdNd

)′, the FGT poverty indicator for domain d can
be expressed as

Fαd =
1

Nd

Nd∑
i=1

(
z − T−1(Ydi)

z

)α
I(T−1(Ydi) < z) = hα(Yd), (14)

and the above EB method can be applied to the area parameter δd = hα(Yd).
In the case of complex parameters such as the FGT poverty indicators, analytic ap-

proximations for the MSE are hard to derive. Molina and Rao (2010) obtained a para-
metric boostrap MSE estimator following the bootstrap method for finite populations of
González-Manteiga et al. (2008), see Molina and Rao (2010) for further details.

Note that both ELL and EB methods require a survey data file containing the obser-
vations from the target variable and the auxiliary variables, that is, {(Ydi,xdi); i ∈ sd, d =
1, . . . , D}, and a census containing the values of the same auxiliary variables for all the
units in the population, that is, {xdi; i = 1, . . . , Nd, d = 1, . . . , D}. EB method requires
additionally to identify the set of out-of-sample units r (or equivalently the sample units
s) in the census P . Linking the survey and the census files is not always possible in prac-
tice. However, typically the area sample size nd is really small compared to the population
size Nd. Then, we can use the Census-EB estimator proposed by Correa, Molina and Rao
(2012), and obtained by generating in each Monte Carlo replicate the full census vector
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Yd rather than only the vector of out-of-sample observations Ydr. For this, we apply
the Monte Carlo approximation (8) by generating Y

(a)
d = µd|s + v

(a)
d 1Nd−nd

+ ε
(a)
d , where

µd|s = Xdβ + γdc(ȳdc − x̄Tdcβ)1Nd
and ε

(a)
d ∼ N(0Nd

, σ2
ediagi=1,...,Nd

(k2di)). If the sampling
fraction nd/Nd is negligible, the Census-EB estimator of δd = Fαd is practically the same
as the original EB estimator.

Note that the EB method does not take into account the sampling design. Another
extension of this EB estimator has been developed by Marhuenda et al. (2017) to deal with
two-stage sampling or nested population structures. For unequal probability sampling,
specially when the sampling is suspected to be informative, Guadarrama, Molina and
Rao (2017) have proposed a variant of the EB estimator that provides protection against
informative sampling. Finally, the EB method has been also developed for the specific case
of skewed model responses, when even after transformation we do not achieve normality,
see Diallo and Rao (2014) for the EB method based on the skew normal distribution and
the procedure based on the Generalized Beta distribution of the Second Kind (GB2) by
Graf, Maŕın and Molina (2018).

7 Hierarchical Bayes (HB) method

Computation of EB (and Census-EB) estimates supplemented with their MSE estimates
is very intensive and might be unfeasible for very large populations or for very complex
indicators. Note that to approximate the EB estimate by Monte Carlo, we need to con-
struct a large number A of censuses Y(a), where each one might be of huge size. Moreover,
to obtain the parametric bootstrap MSE estimator, the Monte Carlo approximation needs
to be repeated for each bootstrap replicate. Seeking for a computationally more efficient
approach, Molina, Nandram and Rao (2014) developed the alternative hierarchical Bayes
(HB) method for estimation of complex non-linear parameters. This approach does not
require the use of bootstrap for MSE estimation because it provides samples from the
posterior distribution, from which posterior variances play the role of MSEs, and any
other useful posterior summary can be easily obtained.

The HB method is based on reparameterizing the nested error model (7) in terms of
the intraclass correlation coefficient ρ = σ2

u/(σ
2
u+σ2

e) and considering priors for the model
parameters (β, ρ, σ2

e) that reflect lack of knowledge. Concretely, the HB model is defined
as

(i) Ydi|ud,β, σ2
e
ind∼ N(x′diβ + ud, σ

2
ek

2
di), i = 1, . . . , Nd,

(ii) ud|ρ, σ2
e
iid∼ N

(
0,

ρ

1− ρ
σ2
e

)
, d = 1, . . . , D,

(iii) π(β, ρ, σ2
e) ∝

1

σ2
e

, ε ≤ ρ ≤ 1− ε, σ2
e > 0,β ∈ Rp,

where ε > 0 is chosen very small to reflect lack of knowledge. See the application carried
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out by Molina, Nandram and Rao (2014), where inference was not sensitive to a small
change of ε.

The posterior distribution can be obtained in terms of posterior conditionals using the
chain rule of probability as follows. First, note that under the HB approach, the random
effects u = (u1, . . . , uD)′ are regarded as additional parameters. Then, the joint posterior
pdf of the vector of parameters θ = (u′,β′, σ2

e , ρ)′ given the sample values Ys is given by

π(u,β, σ2
e , ρ|Ys) = π1(u|β, σ2

e , ρ,Ys)π2(β|σ2
e , ρ,Ys)π3(σ

2
e |ρ,Ys)π4(ρ|Ys), (15)

where the conditional pdfs π1, . . . , π3 have known forms, but not π4. However, since ρ
is in a closed interval from (0, 1), we can generate values from π4 using a grid method,
for more details see Molina, Nandram and Rao (2014). Samples from θ = (u′,β′, σ2

e , ρ)′

can then be generated directly from the posterior distribution in (15), avoiding the use
of Markov Chain Monte Carlo (MCMC) methods. Under general conditions, a proper
posterior distribution is guaranteed.

Given θ, population variables Ydi are all independent, satisfying

Ydi|θ
ind∼ N(x′diβ + ud, σ

2
ek

2
di), i = 1, . . . , Nd, d = 1, . . . , D. (16)

The posterior predictive density of Ydr is then given by

f(Ydr|Ys) =

∫ ∏
i∈rd

f(Ydi|θ)π(θ|Ys)dθ.

Finally, the HB estimator of a domain parameter δd = h(Yd) is given by

δ̂HB
d = EYdr

(δd|Ys) =

∫
h(Yd)f(Ydr|Ys)dYdr. (17)

The HB estimator can be approximated by Monte Carlo. For this, we first generate
samples from the posterior π(θ|Ys). We generate a value ρ(a) from π4(ρ|Ys) using a

grid method; then, a value σ
2(a)
e is generated from π3(σ

2
e |ρ(a),Ys); next β(a) is generated

from π2(β|σ2(a)
e , ρ(a),Ys) and, finally, u(a) is generated from π1(u|β(a), σ

2(a)
e , ρ(a),Ys). This

process is repeated a large number A of times to get a random sample θ(a), a = 1, . . . , A
from π(θ|Ys). Now for each generated value θ(a) from π(θ|Ys), we generate the out-of-

sample values {Y (a)
di , i ∈ rd} from the distribution defined in (16). Thus, for each area d,

we have generated an out-of-sample vector Y
(a)
dr = {Y (a)

di , i ∈ rd}, and we have also the
available sample data Yds. Putting them together, we construct the full population vector
Y

(a)
d = (Y′ds, (Y

(a)
dr )′)′. Now using Y

(a)
d , we compute the area parameter δ

(a)
d = h(Y

(a)
d ). In

the particular case of estimating an FGT poverty indicator, we have δd = Fαd = hα(Yd)

given in (14). Then, in Monte Carlo replicate a, we calculate F
(a)
αd = hα(Y

(a)
d ). Finally,

the HB estimator is approximated as

F̂HB
αd ≈

1

A

A∑
a=1

F
(a)
αd . (18)
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