
(Draft working paper 30 May 2018) 

 

 

SMALL AREA ESTIMATION WITH CALIBRATION 

METHODS 
 

Risto Lehtonen
1
 & Ari Veijanen

2 

 
1
 University of Helsinki, P.O. Box 18, 00014 University of Helsinki. Finland, 

risto.lehtonen@helsinki.fi 
2
 Statistics Finland, P.O. Box 00022 Statistics Finland, ari.veijanen@stat.fi 

 

 

Abstract. Calibration constitutes a flexible tool for design-based estimation for finite 

populations. The traditional model-free calibration has been routinely used for estimation for 

populations and sub-populations (domains) whose sample sizes are large. Model-free 

calibration can be unreliable for small area estimation because of the instability of direct 

calibrated estimates when domain sample sizes become small. We discuss model-assisted 

calibration (model calibration) that incorporates explicit modelling in the calibration procedure. 

We show that in the cases considered, the method outperforms model-free calibration in 

accuracy. In model-assisted calibration, the domain sums of predictions from model are 

produced, instead of the domain sums of the auxiliary variables as in model-free calibration. 

The built-in coherence property of model-free calibration is thus lost in model-assisted 

calibration. For retaining the coherence property, we propose a method called "hybrid" 

calibration. The method combines some preferred properties of model-free calibration 

(coherence property of a desired set of the auxiliary variables) and model-assisted calibration 

(flexible modelling and efficiency improvement). As a further extension, we introduce two-

level hybrid calibration for situations where the model-free and model-assisted parts of a hybrid 

calibration procedure are executed at different hierarchical levels of the population. This 

approach might be useful in cases where the model-free part indicates instability because of 

small domain sample sizes and calibration at a higher level is expected to offer an 

improvement. We discuss the various calibration methods and compare their statistical 

properties (bias, accuracy) and weight distributions by using design-based simulation 

experiments with real data obtained from statistical registers of Statistics Finland and models 

from the family of generalized linear mixed models (GLMM). Our real world example is in 

poverty estimation. 

Keywords. Model-free calibration, model-assisted calibration, "hybrid" calibration, design-

based simulation experiments 
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Résumé. Estimation sur petits domaines par calage. Le calage est un outil flexible pour réaliser 

des estimations dans des populations finies. Le calage ordinaire, sans modèle, a été 

systématiquement utilisé pour des estimations dans des populations et des sous-populations 

(domaines) de grandes tailles. Il a la particularité de ne pas être fiable pour des estimations dans 

de petits domaines car l’estimateur calé est instable lorsque la taille des échantillons tirés dans 

des domaines est petite. Le calage assisté par un modèle («model-assisted») intègre la 

modélisation explicite dans la procédure de calage. Nous montrons que dans les cas considérés, 

la méthode «model-assisted» surpasse le calage ordinaire au niveau de la précision des 

estimations. Dans le calage assisté par un modèle, les sommes des prédictions du modèle sont 

utilisées dans les équations de calage au lieu des sommes des variables auxiliaires comme dans 

le calage ordinaire. La propriété de la cohérence intégrée du calage ordinaire (qui consiste dans 

l'utilisation d'un ensemble désiré de variables auxiliaires) est donc perdue dans le calage assisté 

par un modèle. Pour maintenir cette propriété, nous proposons une méthode appelée calage 

«hybride». La méthode combine certaines propriétés du calage ordinaire (propriété de la 

cohérence intégrée) et du calage assisté par un modèle (modélisation flexible et amélioration de 

l'efficacité). Comme extension supplémentaire, nous introduisons deux niveaux de calage 

hybride pour les cas où le calage ordinaire et celui assisté par un modèle sont exécutés à 

différents niveaux hiérarchiques de la population. Cette approche pourrait être utile dans les cas 

où la partie sans modèle indique une instabilité à cause de la taille des échantillons dans des 

petits domaines et le calage assisté par un modèle exécuté à un niveau plus élevé devraient 

apporter une amélioration. Pour illustrer les forces et faiblesses des différentes méthodes de 

calage, nous comparons leurs propriétés statistiques (biais, précision) et les distributions 

correspondantes de poids de calage à l'aide d'une simulation de type «design-based»; celle-ci 

utilise des données réelles obtenues à partir des registres statistiques provenant de Statistics 

Finland et des modèles mixtes linéaires généralisés (GLMM). Notre exemple basé sur des 

données réelles vise l’estimation de la pauvreté. 

 

Mots-clés: calage sans modèle, calage assisté par un modèle, calage hybride, simulation de 

type «design-based». 

  



(Draft working paper 30 May 2018) 

1. Introduction 

Model-free calibration (Deville and Särndal 1992, Särndal 2007) has been successfully used in 

official statistics production all over the world for reliable design-based estimation of totals and 

means for populations and their subgroups (domains) whose sample sizes are large enough. 

Important properties of model-free calibration are the ability to reproduce the known (published) 

official statistics of the auxiliary variables (coherence or benchmarking property) and the fact that 

aggregate-level auxiliary data only are needed for the calibration procedure. Calibrated weights do 

not depend on any particular study variable, which allows the use of the same weight system to the 

desired set of study variables. These properties of practical importance are appreciated in official 

statistics in particular. In official statistics practice, the coherence property is often considered as the 

main target, and efficiency improvement constitutes a "side product" that may realize if a given 

study variable correlates significantly with the auxiliaries in a domain of interest. Estevao and 

Särndal (2004) and Lehtonen and Veijanen (2009) discuss model-free calibration in the estimation 

for domains and small areas. 

From the modelling point of view, model-free calibration is best justified for continuous study 

variables under an implicit linear model. A more recent design-based calibration method called 

model-assisted calibration (model calibration, Wu and Sitter 2001) allows flexible modelling with 

e.g. generalized linear mixed models (GLMM) and nonparametric methods (Montanari and Ranalli 

2005) as assisting models for various study variable types including binary, polytomous and count 

variables, thus extending the scope of the calibration approach over a linear modeling framework. 

In model-assisted calibration, predicted values are computed for every population element by using 

the estimated model and the auxiliary variable values that are assumed available for all population 

elements. A model-assisted calibration procedure produces the domain sums of predictions in the 

population, instead of the domain sums of the auxiliary variables as in model-free calibration. A 

careful model choice together with powerful auxiliary x-variables can lead to efficiency 

improvement relative to model-free calibration with the same set of auxiliary variables. This can 

happen for small domains in particular, where the direct model-free calibration estimates can 

become instable (e.g. Hidiroglou and Estevao 2016). Lehtonen and Veijanen (2012) developed 

some new variants of model-assisted calibration intended for small area estimation, including semi-

direct and semi-indirect model calibration estimators that are assisted by linear and logistic mixed 

models. They showed that model-assisted calibration can improve efficiency over direct model-free 

calibration for small domains in particular.  

However, the built-in coherence property of model-free calibration is lost in model-assisted 

calibration. The so-called hybrid calibration method (Lehtonen and Veijanen 2015) was introduced 

to overcome this restriction by combining some of the favourable properties of model-free 

calibration and model-assisted calibration into a single calibration procedure. Hybrid calibration 

incorporates the coherence property of model-free calibration into the calibration procedure, still 

retaining flexibility in model choice and efficiency gain of model-assisted calibration. A multiple 

model calibration method of Montanari and Ranalli (2009) involves similar goals.  

In hybrid calibration, a set of auxiliary x-variables in addition to the predictions from the model are 

inserted in the calibration vector, constituting the model-free calibration part and the model-assisted 

calibration part of the vector. In our research, hybrid calibration typically outperforms model-free 

calibration in efficiency but does not necessarily outperform model-assisted calibration in small 

domains. This is the price to be paid for incorporating the coherence property in the model-assisted 

calibration procedure.  

A variant of the method, two-level hybrid calibration (Lehtonen and Veijanen 2017), offers some 

protection against the possible instability problems of the model-free calibration part of a hybrid 

calibration procedure in small domains. In this method, model-assisted calibration operates at the 

original domain level but the model-free calibration part is defined at a higher hierarchical level. In 

domain estimation, two-level hybrid calibration can be considered as a compromise between model-
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free calibration and model-assisted calibration. 

The paper is organized as follows. The calibration methods are introduced in Section 2. In Section 

3, the statistical properties (bias, accuracy) of the methods are compared by using design-based 

simulation experiments with real data obtained from statistical registers of Statistics Finland. Our 

empirical framework is in poverty estimation. We consider calibration estimation for the at-risk-of 

poverty rate with logistic mixed models as assisting models. Concluding remarks are in Section 4. 

2. Calibration methods 

2.1 Preliminaries 

Consider a finite population {1,2,..., ,..., }U k N , where k refers to the label of population element. 

A sub-population or domain of U is denoted 
dU , 1,...,d D . The size of a domain is 

dN  and the 

size of the corresponding subset 
d ds U s   in sample s U  is 

dn . The domain sample sizes are 

not controlled by the sampling design (domains are of unplanned type) and thus 
dn  is a random 

variate. Design weights are 1/k ka  , where 
k  is inclusion probability for k U  under a given 

sampling design ( )p  . We assume an access to auxiliary data at the unit level; let 1( ,..., )k k Jkx x x  

denote a known vector value for every population element k U . We usually add in the vector a 

value 0 1kx   for all k. The study variable values ky  are obtained for the sample elements k s . 

The sample data set and the auxiliary data set are merged at the unit level by using unique 

identifiers. Under this set-up, we assume a complete data set without missingness. 

In our empirical example we are working with a binary y-variable indicating whether a person is in 

poverty or not. A logistic model formulation is then a natural choice. A mixed model formulation is 

often preferred over a fixed-effects model for accounting for possible differences between domains, 

in particular in cases where the number of domains is large. A logistic mixed model incorporates 

domain-specific random intercepts 2~ (0, )d uu N   for domain 
dU  and is given by 

 
exp( )

( | ) { 1| ; } ,    ,  1,...,
1 exp( )

k d
m k d k d d

k d

u
E y u P y u k U d D

u

 
    

 

x β
β

x β
,  (1) 

where 0 1( , ,..., )k k k Jkx x x x  with 0 1kx   for all k, 0 1( , ,..., )J   β  is a vector of fixed effects 

common for all domains and m refers to the expectation under the model. The parameters β  and 2

u  

are first estimated by ML and estimates ˆ
du  are calculated. Predictions ˆˆ ˆ{ 1| ; }k k dy P y u  β  are 

computed for every 
dk U , 1,...,d D .  

The predictions estimated from (1) are used as auxiliary information in model-assisted calibration 

estimation for domain totals of the study variable y. In model-free calibration estimation, the 

original x-variables (their domain totals) are used. An ordinary model-free calibration estimator is 

of direct type as it only involves observations from the domain of interest A model-assisted 

calibration estimator is of indirect type because it uses y-data from other domains as well (later on 

we will refine slightly the definition). A more detailed discussion is in Lehtonen and Veijanen 

(2012). 

The domain total of our binary study variable y is given by 

 
d

d k

k U

t y


  ,  1,...,d D ,     (2) 

where 1ky   if a person is in poverty, and 0ky   otherwise. Poverty rate in domain d is: 

 d
d

d

t
r

N
 .      (3) 
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2.2 Calibration estimators 

Calibration in domain estimation. A calibration weighting system is introduced here by using a 

distance measure and a set of calibration equations. In domain estimation, calibration equations are 

given by 

 
d d

di i i

i s i U

w
 

 z z , 1,...,d D ,     (4) 

where 
diw  is calibration weight for element i in domain d and 

iz  denotes a generic calibration 

vector whose structure depends on the chosen calibration method. We employ here the distance 

measure approach with a chi-square distance (Deville and Särndal 1990, 1992). Using Lagrange 

multipliers   we minimize: 

 

2( )

d d d

dk k
d di i i

k s i s i Uk

w a
w

a  

 
  
 

  λ z z     (5) 

subject to the calibration conditions (4). The equation is minimized by weights 

  1dk k d kw a   λ z ,     (6) 

where  

 

1

d d d

d i i i i i i

i U i s i s

a a



  

   
     

   
  λ z z z z , 1,...,d D .   (7) 

We assume 
d

i i ii s
a


 z z  be invertible. In domain estimation, the weights (6) are applied over a 

domain. 

Model-free calibration (MFC). In classical model-free calibration (Deville and Särndal 1992), a 

calibration equation is imposed: the weighted sample sums of auxiliary x-variable values reproduce 

the known population sums (coherence or benchmarking property). Calibration vector iz  for (4) 

contains the original auxiliary x-variables; it is of the form  

 0 1( , ,..., )i i i i Jix x x  z x , di U , 1,...,d D    (8) 

where 0 1ix   for di U . Calibration equations (4) are given by 

 0 1, ,...,
d d d d d d

di i di i i i i Ji

i s i s i U i U i U i U

w w x x x
     

 
    

 
     z x x  ,  1,...,d D . (9) 

We minimize (5) subject to (9) and obtain MFC estimator of domain total dt  of the form 

 ˆ

d

dMFC dk k

k s

t w y


 , 1,...,d D ,     (10) 

where the weights dkw  are computed by (6) and (7) with (8). The estimator (10) is of direct type 

because it operates with y-data from the given domain only. Under the setting described in 2.1, it 

can happen that a small number of sample elements only fall in some domains, possibly causing 

instability problems for the MFC estimator.  

Model-assisted calibration (MC). Model-assisted calibration for domain estimation is intended to 

extend the scope of model-free calibration by introducing flexible modelling in the calibration 

procedure (Lehtonen and Veijanen 2012). The method also aims to overcome the possible 

instability problems of MFC in small domains. The MC procedure involves two steps: the 
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modelling step and the calibration step. In the modelling step, the chosen model for y is fitted to the 

sample data, and predictions ˆ
ky  are computed for every 

dk U , 1,...,d D . In the calibration step, 

the predictions are incorporated in the calibration z-vector and calibration weights are determined 

by inserting the z-vector into formulas (4) to (7).  

Model-assisted calibration can be defined at the population level, at the domain level or at an 

intermediate level, for example at a regional level (neighbourhood) that contains the domain of 

interest. In a “semi-direct” approach, predictions for the domain of interest only are used in the 

calibration step, whereas in a “semi-indirect” approach, predictions outside the domain of interest 

also are included. For both variants, the modelling step uses all available sample data. More 

detailed discussion is in Lehtonen and Veijanen (2012).  

We discuss here the semi-direct method. Calibration vector 
iz  for (4) is:  

 0
ˆ( , )i i ix y z , 

di U ,      (11) 

where 0 1ix   for di U . Fitted values in (11) are ˆˆ ˆ( ( ))k k dy f  x β u  with 0 1( , ,..., )k k k Jkx x x x , 

dk U . In poverty rate estimation, our study variable is binary and the fitted values are computed 

by using model (1). We obtain 

 
ˆ ˆexp( )

ˆ ,    ,  1,...,
ˆ ˆ1 exp( )

k d
k d

k d

u
y k U d D

u

 
  

 

x β

x β
.   (12) 

Calibration equations are given by 

 0
ˆ,

d d d d

di i i i i

i s i U i U i U

w x y
   

 
   

 
   z z ,  1,...,d D .   (13) 

We minimize (5) subject to (13) and obtain a model-assisted calibration estimator of (2) given by  

 ˆ

d

dMC dk k

k s

t w y


 , 1,...,d D ,     (14) 

where the weights dkw  are computed by (6) and (7) with (11).  

We call (14) semi-direct, as calibration is defined at the domain level but the weights are 

determined by a model that is fitted to the whole sample.  

Hybrid calibration (HC). The coherence property (9) of model-free calibration for auxiliary data 

vector 0 1( , ,..., )k k k Jkx x x x  is lost in model-assisted calibration. In hybrid calibration (Lehtonen and 

Veijanen 2015), we impose the coherence property for a chosen subset of x-variables (the MFC 

part) and retain the MC calibration property (11) for another subset (the MC part). Hybrid 

calibration is discussed here for semi-direct MC.  

Calibration vector for (4) is: 

 
0 1

ˆ( , , ,..., )i i i i jix y x x z , di U , 1,...,d D ,     (15) 

and calibration equations are given by  

 0 1
ˆ, , ,...,

     

 
   

 
     

d d d d d d

di i i i i i ji

i s i U i U i U i U i U

w x y x xz z ,   (16) 

where again 0 1ix   for di U . We minimize (5) subject to (16) and obtain hybrid calibration 

estimator of (2) given by  
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 ˆ

d

dHC dk k

k s

t w y


 , 1,...,d D ,     (17) 

where dkw  are computed by (6) and (7) with (15). The fitted values for MC part are 

ˆˆ ˆ( ( ))k k dy f  x β u  with 
0 1,( , ,..., )k k j k Jkx x x

x , dk U , where the assisting model is (1) with the 

kx  above. Note that actually, we have split the original x-vector into two non-overlapping subsets: 

MFC part with (1)

1( ,..., )k k jkx x x  and MC part with 
(2)

0 1,( , ,..., )k k j k Jkx x x
x . It also is possible to 

make up overlapping decomposition of the x-vector. 

Two-level hybrid calibration (HC2). The MFC part of hybrid calibration can involve instability 

for domains whose sample sizes are small. Two-level hybrid calibration (Lehtonen and Veijanen 

2017) is intended to reduce the effects of the possible instability but still retain the option for 

efficiency improvement. The idea is to let the model-assisted calibration part to operate at the 

original domain level (e.g. NUTS4) and to define the model-free calibration part at a higher 

hierarchical level (e.g. NUTS3), where instability problems are hopefully not met.  

In two-level hybrid calibration, we define two sets of calibration equations to be solved 

simultaneously:  

 (1) (1)

0
ˆ,  

d d d d

ri i i i i

i r i U i U i U

w x y
   

 
   

 
   z z  MC part (lower level)  (18) 

 (2) (2)

1 ,...,
d d d d

ri i i i ji

i r i R i R i R

w x x
   

 
   

 
   z z  MFC part (higher level)  (19) 

where 

(1) (1) (1)

0

(1)

0 0

(1)

ˆ( , ) ,  ,  , 1,...,   (auxiliary data vector for MC part)

1,  ,  0 otherwise, (extended -variable) 

ˆ ˆ ,  ,  0 otherwise (extended predictions)

ˆ ( (

i i i d d d d

i d

i i d

i i

x y r s R R U d D

x i U x

y y i U

y f

    

 

 



z

x

0 1,

(2)

1

ˆ ˆ )) (logistic mixed model)

( , ,..., ) ,   (x-data vector for logistic model)

( ,..., )   (auxiliary x-data vector for MFC part)

d

i i j i Ji d

i i ji

x x x k U

x x





 



β u

x

z

 

Using Lagrange multipliers   we minimize: 

 
 

(1)

2 (1)
1

(2) (2)
2

 d

d d

d

i

i Rrk k i

ri

k r i rk i i

i R

w a
w
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

 



  
       

      
     

  


 



z
λ z

λ z z
   (20) 

subject to calibration constraints (18) and (19). Writing 
1 2( , )r

  λ λ λ and (1) (2)( , )k i i
z z z , equation 

(20) is minimized by weights 

  1rk k r kw a   λ z , 

where 

 

1

(1) (1) (1) (1)
1

(2) (2) (2) (2)
2 d d d

i i i i

r i i

i R i r i ri i i i

a a



  

                                       

  
λ z z z z

λ
λ z z z z

.  (21) 
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The resulting two-level HC estimator of (2) given by 

 2
ˆ

d

dHC rk k

k s

t w y


 , 1,...,d D .     (22) 

3. Simulation experiments 

Accuracy comparison of calibration estimators. The binary poverty indicator shows when a 

person’s equivalized income is smaller than or equal to the poverty threshold, 60% of the median 

equivalized income M  in the population. The indicator for sample person k is defined as 

ˆ{ 0.6 }k ky I y M  , where 1ky   if a person is in poverty and 0 otherwise. The quantity ˆ0.6M is 

the estimated poverty threshold, where M̂  is estimated by HT from the estimated distribution 

function of equivalized income in the population (see details in Lehtonen and Veijanen 2012). The 

binary poverty indicator y acts as the study variable in the calibration exercise. 

For design-based simulation experiments, an adult population of about 600,000 persons was 

constructed from real income data of Statistics Finland, containing seven NUTS level 3 regions and 

36 NUTS level 4 regions in Western Finland. In addition to the equalized income variable, our 

population contained three auxiliary variables: gender, three-category age and three-category labor 

force status. We created indicators for each class of a qualitative variable. The complete auxiliary x-

vector for k U  thus is 0 1 2 3 4 5( , , , , , )k k k k k kx x x x x x x  and was used in MFC and MC. In HC and 

HC2, kx  was divided into two subsets: 
(1)

1 2( , )k k kx x x  was used for the MFC part and 

(2)

0 3 4 5( , , , )k k k k kx x x x x  was used in the MC part.  The x-variables showed some explanatory 

power: in logistic mixed models, the complete x-data explained about 15% of the variation of y. 

As domains of interest we used the D = 36 NUTS4 regions, and the 7 NUTS3 regions were used as 

the higher level regions in two-level HC. The NUTS classification is hierarchical: each NUTS4 

region is contained within a larger NUTS3 region. Sample sizes in NUTS3 regions obviously are 

larger than in NUTS4 regions, which is beneficial for two-level hybrid calibration. 

In the simulations, K = 1000 samples of n = 2000 units were drawn with simple random sampling 

without replacement (SRSWOR) from the unit-level population. Design bias and accuracy were 

measured by absolute relative bias (ARB) and relative root mean squared error (RRMSE): 

1

ˆ ˆ( ) | (1 / ) ( ) | /
K

d dj d d

j

ARB K   


   and 2

1

ˆ ˆ( ) (1 / ) ( ) /
K

d dj d d

j

RRMSE K   


  . 

Poverty rate (3) for domain d was estimated by ˆˆ /d d dr t N , 1,...,d D , where 
d̂t  is obtained by 

MFC (10), MC (14), HC (17) and HC2 (22). We present the averages of RRMSE figures over three 

domain classes defined by expected domain sample size. ARB figures are not presented because all 

methods appeared nearly design unbiased (results are available from authors). Our logistic mixed 

models contained regional random intercepts associated with NUTS4 regions.  

Several conclusions can be drawn from Table 1. Over all domain sample size classes, semi-direct 

model-assisted calibration that incorporates the auxiliary information in the calibration procedure 

by a model indicates best accuracy, and direct model-free calibration was the worst. This holds for 

all domain sample sizes; the difference in accuracy declines with increasing domain sample size, as 

expected. The logistic mixed model in MC thus tends to improve accuracy over MFC, whose 

implicit assisting model is a linear fixed-effects model fitted separately in each domain. The figures 

also indicate that MFC can suffer from instability in the smallest domains.  

When incorporating by HC the coherence property for a subset of x-variables, we lose accuracy 

relative to MC, but still HC outperforms MFC in all domain classes. Because of the MFC part, HC 

might suffer from instability in small domains and we try to clean this out by two-level HC. This 

appears successful and the improvement is best visible in the group of smallest domains, where the 
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accuracy of two-level hybrid calibration is close to that of model-assisted calibration. 

Table 1. Average relative root mean squared error (RRMSE) (%) of calibration estimators of 

domain poverty rate in three domain sample size classes in a simulation experiment of 1000 

SRSWOR samples of 2000 units. 

 

Estimator 
(formula number  
in parentheses) 

Assisting model & calibration 

scheme 

Expected domain sample size 
All 

36 

domains 

Minor 

<25 

10 domains 

Medium 

25-50 

16 domains 

Major 

>50 

10 domains 

Direct estimator 

Model-free 

calibration (10) 
NUTS4  1 2 3 4 5(1, , , , , )k k k k k kx x x x x z  61.1 40.4 20.1 47.3 

Semi-direct estimators 

Model: ( ) exp( ) / (1 exp( ))m k k d k dd
E y u u u    x β x β , 

dk U , 
1 2 3 4 5(1, , , , , )  k k k k k kx x x x x x  

Model 

calibration (13) 
NUTS4 ˆ(1, )k ky z  54.1 37.6 19.8 43.0 

Model: ( ) exp( ) / (1 exp( ))m k k d k dd
E y u u u    x β x β , 

dk U , 
3 4 5(1, , , )  k k k kx x x x  

Hybrid 

calibration (17) 
NUTS4 1 2

ˆ(1, , , )k k k ky x x z  58.0 39.1 20.1 45.4 

Two-level 

hybrid 

calibration (22) 

NUTS4 
(1) ˆ(1, )k ky z  

54.2 38.1 20.2 43.3 
NUTS3 

(2)

1 2( , )k k kx x z  

Distribution of weights. It is well known that the calibration approach chosen here can involve 

large variation of weights and negative weights that are often considered unfeasible in practical 

applications. Negative weights are expected in small domains in particular. We were interested in 

the following question: to what extent the semi-direct calibration methods can improve the weight 

distribution relative to that of the model-free calibration?  

We executed a small simulation experiment for weight distribution with K = 100 SRSWOR samples 

from our population and computed the maximum interdecile range of calibrated weights for each 

sample. Medians of the statistic in domain size classes are in Table 2.  

Table 2. Median of maximum interdecile range of calibrated weights in three domain sample size 

classes in a simulation experiment of 100 SRSWOR samples of 2000 units. 

Method 

Expected domain sample size 

Minor 

<25 

Medium 

25-50 

Major 

>50 

Model-free calibration MFC 1620 673 210 

Model assisted calibration MC 984 418 172 

Hybrid calibration HC 1415 665 245 

Two-level hybrid calibration HC2 780 430 214 

It is clearly seen that MFC and HC suffer from instability in the small domains group and MC and 

HC2 behave considerably better. Instability vanishes with increasing domain sample size. 

More detailed light to weight distributions is thrown by Figure 1. It contains four panels, one for 

each calibration method. The upper left panel is for model-free calibration, the upper right is for 

model calibration, the lower left is for hybrid calibration and the lower right is for two-level hybrid 

calibration. The horizontal axis in each graph indicates the expected domain sample size, from 

smallest to largest, and the value of weight is on the vertical axis, varying from 1000  to 2000.  

For each of the 36 domains, a graph shows a box plot containing the average weight and the 

distribution of the 100 weight values. The averages of weight values for each domain are pretty 
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equal as expected. The variation of weights is clearly largest for model-free calibration. In this 

method, the presence of large positive and negative weights increases dramatically with decreasing 

domain sample size, and decreases only slowly when domain sample size increases. Model-assisted 

calibration shows best performance: the variation of weights is much smaller than in MFC and the 

variation decreases rapidly when domain sample size increases. Two-level hybrid calibration shows 

as good performance as MC, indicating successful stabilization of the weight distribution.  

It is obvious that in the cases considered, semi-direct calibration can decrease the variation of 

weights and improve the distribution of weights, and can perform better relative to direct model-

free calibration. Of the methods, model-assisted calibration and two-level hybrid calibration 

indicate best performance. 

 

Panel 1. Model-free calibration MFC

 

Panel 2. Model-assisted calibration MC

 

Panel 3. Single-level hybrid calibration HC

 

Panel 4. Two-level hybrid calibration HC2

 

Figure 1. Distribution of calibrated weights by expected domain sample size in a simulation 

experiment of 100 SRSWOR samples of 2000 units. 
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Concluding remarks 

We introduced three design-based calibration methods for domain and small area estimation that 

incorporated modelling as a part of the calibration procedure. Ordinary model-free calibration was 

presented as a reference method. In our simulation experiments, all methods were nearly design 

unbiased for the parameters of interest. The methods indicated nearly equal accuracy for domains 

whose sample sizes were large enough. In small domain estimation, accuracy properties differed 

considerably. The ordinary model-free calibration method of direct type failed in the smallest 

domains because of the instability and large variation of weights. The semi-direct methods that 

incorporated modelling provided clear improvement. Model-assisted calibration outperformed the 

other methods in accuracy, notably in small domains. Hybrid calibration improved accuracy over 

model-free calibration, but not much. Two-level hybrid calibration behaved better and may offer a 

compromise in situations where coherence properties are required for some x-variables and the 

possibility of efficiency improvement via flexible modelling is still desired. 

We did not incorporate weight restriction in order to avoid subjective elements in the methods. 

Under the chosen calibration framework, weight distributions differed between methods and large 

negative and positive weights appeared, for the model-free method in particular. The distributions 

were improved considerably for model-assisted calibration and two-level hybrid calibration. 
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